I. RESOLUCIÓN DE PROBLEMAS NUMÉRICOS CON CALCULADORA CIENTÍFICA

USO DE LA CALCULADORA CIENTÍFICA CLASSWIZ fx-991EX DE CASIO EN PROBLEMAS Con solución numérica

Texto desarrollado por Alex Polo Velázquez

A.1 Introducción

La calculadora científica ClassWiz fx-991EX de Casio usa el método conocido como Natural-V.P.A.M (siglas en inglés de método algebraico visualmente perfecto natural) que permite introducir y visualizar las expresiones matemáticas tal como se escriben normalmente en un pizarrón o en un libro de texto, además de que las funciones (como log, ln, cos, etc.), los operadores (como \int , d/dx, etc.) y las constantes (como e, π , *i*, etc.) aparecen en la pantalla. También permite editar fácilmente expresiones matemáticas que se deseen corregir o a las que se les quieran introducir valores nuevos (sin necesidad de volver a escribir toda la expresión).

A.2 Leyenda de teclas

La función específica de la mayoría de las teclas depende de si previa-

mente se oprimió la tecla 💽 o 💽 y también del modo de cálculo que se

haya seleccionado. Si se oprimió previamente 💽 la función que realiza

es la que se encuentra en amarillo y si la que se oprimió fue Se realiza la que se encuentra en rojo. Si se está usando el modo de números complejos se realiza la función que aparece en morado y en el modo de

sistemas numéricos de base *n* la que aparece en azul.

En la figura siguiente se indica la función de las teclas de movimiento que se localizan debajo de la pantalla y se muestra la forma en que se representarán.

A.3 Procedimiento inicial para todos los cálculos

Encienda la calculadora presionando la tecla 🢽

Antes de realizar cualquier cálculo es recomendable poner la calculadora en su configuración predeterminada como se indica a continuación:

A.4 Evaluación de fórmulas

La calculadora permite guardar una fórmula para que sólo se tengan que introducir los valores de las variables cada vez que se desee evaluarla. A continuación se muestran los pasos a seguir para guardar la fórmula del volumen de una pirámide $V = \frac{h \times B}{3}$ y evaluarlo para diversos valores de *h* y de *B* (ejemplo 2 sección 241):

A.5 Ecuaciones simultáneas de primer grado con dos, tres o cuatro incógnitas

La calculadora permite obtener directamente la solución de sistemas de ecuaciones simultáneas de primer grado con dos, tres o cuatro incógnitas con tan sólo introducir los coeficientes de las incógnitas y los términos independientes:

 $\begin{array}{l} a_{11}x + a_{12}y = b_1 & a_{11}x + a_{12}y + a_{13}z = b_1 \\ a_{21}x + a_{22}y = b_2 & a_{21}x + a_{22}y + a_{23}z = b_2 \\ & a_{31}x + a_{32}y + a_{33}z = b_3 \end{array}$ $\begin{array}{l} a_{11}x + a_{12}y + a_{13}z + a_{14}t = b_1 \\ a_{21}x + a_{22}y + a_{23}z + a_{24}t = b_2 \\ a_{31}x + a_{32}y + a_{33}z + a_{34}t = b_3 \\ a_{41}x + a_{42}y + a_{43}z + a_{44}t = b_4 \end{array}$

A continuación se presenta el procedimiento para resolver los siguientes sistemas de ecuaciones simultáneas:

- a) 10x + 9y = 88x - 15y = -1 (sección 297)
- b) x + 4y z = 6 2x + 5y - 7z = -93x - 2y + z = 2 (ejemplo 1 de la sección 306)

Los coeficientes y términos independientes se introducen en el orden predeterminado a_{11} , a_{12} , a_{13} , a_{14} , b_1 , a_{21} , a_{22} , a_{23} , a_{24} , b_2 , a_{31} , a_{32} , a_{33} , a_{34} , b_3 , a_{41} , a_{42} , a_{43} , a_{44} , b_4 , aunque con las teclas de movimiento se pueden introducir en el orden en que se desee e incluso se pueden corregir. Una vez introducido un valor se debe oprimir = para pasar a la siguiente posición. Si un valor es cero se debe usar la secuencia **o** = o bien **b**. Para introducir valores negativos se usa **c**.

A.6 Determinantes

La calculadora permite calcular determinantes de primero, segundo, tercero y cuarto orden con tan sólo introducir sus elementos:

Los elementos del determinante se introducen en el orden predeterminado a_{11} , a_{12} , a_{13} , a_{14} , a_{21} , a_{22} , a_{23} , a_{24} , a_{31} , a_{32} , a_{33} , a_{34} , a_{41} , a_{42} , a_{43} , a_{44} aunque con las teclas de movimiento se pueden introducir en el orden en que se desee e incluso se pueden corregir. Una vez introducido un valor se debe oprimir = para pasar a la siguiente posición. Si un valor es cero se debe usar la secuencia **O** = o bien **()**. Para introducir valores negativos se usa **(=)**.

A continuación se presenta el procedimiento para evaluar el determinante $\begin{vmatrix} -3 & -6 & 1 \\ 4 & 1 & -3 \\ 5 & 8 & 7 \end{vmatrix}$

Acción	Secuencia de teclas	Pantalla que se visualiza
Seleccionar el modo de cálculos con matrices (opción 4:Matrix)	4	
Definir una matriz (se pue- de seleccionar cualquiera A, B, C o D)		Define Matrix 1:MatA 2:MatB 3:MatC 4:MatD
Introducir el orden del de- terminante. Se debe definir una matriz cuadrada cuyo número de renglones sea igual al número de columnas, am- bos iguales al orden del determinante a calcular.	33	MatA Number of Rows? Select 1~4
		MatA Number of Columns? Select 1~4
		MatA=
Introducir los elementos de la matriz (son los mis- mos que los del determi- nante).	() 3 = () 5 = 1 = 4 = 1 = () 3 = 5 = 8 = 7 =	$\begin{bmatrix} MatA = & & & \\ & -3 & -6 & 1 \\ & 4 & 1 & -3 \\ & 5 & 8 & & & \\ & & & & & & \\ & & & & & & &$
Especificar que se va a realizar una operación con la matriz definida. (Opción de cálculos con matrices: 3:Matrix Calc)	o simplemente	1:Define Matrix 2:Edit Matrix 3:Matrix Calc
		I [®] Matrix

A.7 Análisis combinatorio

La calculadora permite calcular directamente el número de permutaciones o combinaciones posibles cuando se toman *r* elementos de *n* ($_nP_r \circ _nC_r$ respectivamente) así como el factorial de un número (*n*!). El procedimiento se muestra a continuación:

A.8 Operaciones básicas con números complejos

Con la calculadora se pueden realizar directamente las operaciones de suma, resta, multiplicación, división y potenciación de números complejos, ya que cuenta con una tecla para el número imaginario *i* (ENG). No es necesario usar la tecla \times para multiplicarlo por un número real, por ejemplo, 5*i* se puede introducir usando la secuencia de teclas **5** ENG.

Acción	Secuencia de teclas	Pantalla que se visualiza
Seleccionar el modo de cálculos con núme- ros complejos (opción 2:Complex)	2	<u><u><u>×</u></u>÷ g <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u>2</u> <u><u></u><u>6</u><u>8</u><u>8</u> g <u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>
Suma de números com- plejos Sumar 2 + 5 i y 3 – 2 i (ejemplo 1 sección 416).	2 + 5 ENG + 3 - 2 ENG =	2+5i+3-2i

A.9 Ecuaciones de segundo, tercero o cuarto grado con una incógnita

La calculadora permite obtener directamente todas las soluciones reales y complejas de ecuaciones de segundo, tercero y cuarto grado con una incógnita con sólo introducir sus coeficientes:

 $ax^{2} + bx + c = 0$ $ax^{3} + bx^{2} + cx + d = 0$ $ax^{4} + bx^{3} + cx^{2} + dx + e = 0$

Los coeficientes se introducen en el orden predeterminado a, b, c, d, e aunque con las teclas \bigcirc y \bigcirc se pueden introducir en el orden en que se desee e incluso se pueden corregir. Una vez introducido un valor se debe oprimir = para pasar a la siguiente posición. Si un valor es cero se debe usar la secuencia \bigcirc = o bien \bigcirc . Para introducir valores negativos se usa \bigcirc .

A continuación se presenta el procedimiento para resolver los siguientes sistemas de ecuaciones simultáneas:

a) $4x^2 + 3x - 22 = 0$ (ejemplo 1 sección 428) b) $x^3 - 1 = 0$ (sección 459)

A.10 Tabulación de funciones

La calculadora permite tabular una o dos funciones simultáneamente (f(x) y g(x)). En la primera columna aparecen los valores x desde un valor inicial hasta un valor final con un incremento dado, en la segunda columna los valores de f(x) y en la tercera columna (si existe) los valores de g(x).

A continuación se muestra el procedimiento para tabular la función $f(x) = x^2 - 6x + 5$ (ejemplo 1 sección 455) de x = -1 a x = 7 con $\Delta x = 1$:

A.11 Series aritméticas y geométricas

Para calcular el valor de una serie se usa la secuencia de teclas 💽 📧. Para introducir la

expresión matemática de la serie se debe usar la variable x (tecla \mathbf{x}) como índice de la suma (en vez de las que comúnmente se emplean como $i, j, k, m \circ n$). Es muy importante usar correctamente paréntesis internos para obtener el resultado esperado. A continuación se ilustra el procedimiento para una serie aritmética y una geométrica.

A.12 Logaritmos y antilogaritmos

La calculadora permite calcular logaritmos de cualquier base y, en particular, los decimales y naturales (base *e*) y antilogaritmos decimales y naturales. El procedimiento se muestra a continuación.

Antilogaritmos decimales Calcular antilog (-1.70896) (ejemplo 3 sección 494)

A. 13 Interés compuesto, anualidades e imposiciones

Para el cálculo de interés compuesto, anualidades e imposiciones es importante usar paréntesis. Para ilustrar el procedimiento se calculará la expresión $a = \frac{500\ 000 \times 0.04 \times 1.04^{15}}{1.04^{15}-1}$ (ejemplo 1 sección 502). Puesto que estos problemas tienen que ver con dinero el resultado se debe dar hasta centavos, es decir, el resultado se debe redondear a dos decimales.

1.70896

0.01954519465

